Aromaticity

Cyclodecapentaene

Has 10π electrons and fits 4n+2 rule for n=2, but is not planar = not aromatic

Naphthalene

Has 10π electrons and fits 4n+2 rule for n=2, is planar = aromatic

Heterocycles: have atoms other than C in ring, some are aromatic

Coniine

Non-aromatic heterocycle

Pyridine aromatic heterocycle

Lone pair electrons on N

Pyridine is aromatic Has 6 π electrons

Pyridine

molecules will be aromatic if they can as it imparts stability

Pyrrole

Furan

electrons on O

Lone pairs

electrons on N Lone pair

Imidazole

H electrons on N Lone pair

50

Aromatic Heterocycles and Ions

molecules will be aromatic if they can as it imparts stability: more examples

Pyrimidine

Purine

Aromatic intermediates: cations and anions

cyclopropane and cyclopropene are extremely reactive - due to angle strain but cyclopropene cation is more stable than expected (still very reactive)

aromatic cation: has 2 π electrons (4n+2, n=0)

anion not aromatic : has 4 π electrons

2

Aromatic Ions

cyclopentadiene pKa = 16!

aromatic anion: has 6 π electrons (4n+2, n=1)

acidity of cyclopentadiene hydrogen enhanced by 30 orders of magnitude (30 pKa units

cycloheptatrienyl cation aromatic : has 6π electrons

Some things you should know: functional groups & structure

Viagra: \$2.3 B/yr

aids jet lag recovery in hamsters

Can you recognize its functional groups? (amine, amide)

Molecular formula? (C₂₂H₃₀N₆O₄S)

Which rings are aromatic? (*)

Stereogenic centers? (No)

Common Substituted Benzene Structures (that you should know):

Nomenclature of substituted benzene rings

are used to indicate position (or relative position) with 2 substituents on a benzene ring, ortho, meta, and para

Meta refers to 1,3-substitution and is abbreviated m-Para refers to 1,4-substitution and is abbreviated p-Ortho refers to 1,2-substitution and is abbreviated o-

Examples

오 p-aminophenol (more correct, OH has priority)

or

p-hydroxyaniline

NH₂

p-methoxybenzoic acid

OCH₃ (this is an ether group, specifically methoxy)

m-bromophenol or meta-bromophenol or 3-bromophenol

9

Examples

2-hydroxybenzoic acid

(salicyclic acid)

2-acetoxybenzoic acid acetylsalicylic acid (aspirin)

4-hydroxy-3-methoxybenzaldehyde (or vanillin)

The carbon substituent (an aldehyde or acid group) usually gets priority

Then number the ring such that the substituents have the lowest numbers

Example

O₂N CH₃

2,4,6-trinitrotoluene (TNT)

benzoyl chloride

Aromatic Groups:

Phenyl group

Ar = aryl = any aromatic group

Bn = benzyl group

benzyl chloride

H

77

Nomenclature of Aromatic Compounds

sometimes useful to name a compound with the aromatic part as a substituent

3-phenylpentane

2-*sec*-butyl-4,6-dinitrophenol (Amaize) a corn yield enhancer 6-(1-methylpropyl)-2,4-dinitrophenol

Paul Muller won 1948 Nobel Prize in Medicine for it DDT - an insecticide - to wipe out malarial mosquito

1,1,1-trichloro-2,2-bis-(4-chlorophenyl)ethane

OH OH

2,4-D 2,4-dichlorophenoxyacetic acid

CI CI OH OH

2,4,5-T 2,4,5-trichlorophenoxyacetic acid

Agent Orange

acetic acid

Weed and Feed

S

biphenyl

a polychlorinated biphenyl PCB

a polybrominated biphenyl PBB